Feature-based decision aggregation in modular neural network classifiers

نویسندگان

  • Nayer M. Wanas
  • Mohamed S. Kamel
  • Gasser Auda
  • Fakhri Karray
چکیده

In several modular neural network (MNN) architectures, the individual decisions at the module level have to be integrated together using a voting scheme. All these voting schemes use the outputs of the individual modules to produce a global output without inferring explicit information from the problem feature space. This makes the choice of the aggregation procedure very subjective. In this work, a new MNN architecture will be presented. This architecture integrates learning into the voting scheme. We will be focusing on making the decision fusion a more dynamic process. In this context, dynamic means the aggregation procedure which has the ̄exibility to adapt to changes in the input. This approach requires the aggregation procedure to gather information about the input to help better understand how to dynamically aggregate decisions. Ó 1999 Published by Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

A Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection

Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...

متن کامل

Accurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network

Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...

متن کامل

سیستم شناسایی و طبقه بندی اسامی در متون فارسی

Name entity recognition (NER) is a system that can identify one or more kinds of names in a text and classify them into specified categories. These categories can be name of people, organizations, companies, places (country, city, street, etc.), time related to names (date and time), financial values, percentages, etc. Although during the past decade a lot of researches has been done on NER in ...

متن کامل

Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets

Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1999